Periodic solutions for nonlocal $p(t)$-Laplacian systems
نویسندگان
چکیده
منابع مشابه
Existence of Periodic Solutions of p(t)-Laplacian Systems
In this paper, by using the least action principle in critical point theory, we obtain some existence theorems of periodic solutions for p(t)-Laplacian system d dt (|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, which generalize some existence theorems. 2010 Mathematics Subject Classification: 34C25, 35A15
متن کاملExistence of periodic solutions for p-Laplacian neutral Rayleigh equation
where φp(x) = |x|p–x for x = and p > ; σ and c are given constants with |c| = ; φp() = , f () = . The conjugate exponent of p is denoted by q, i.e. p + q = . f , g , β , e, and τ are real continuous functions on R; τ , β , and e are periodic with periodic T , T > is a constant; ∫ T e(t)dt = , ∫ T β(t) = . As we know, the p-Laplace Rayleigh equation with a deviating argumen...
متن کاملPeriodic solutions for a p-Laplacian-like NFDE system
We consider an n-dimensional p-Laplacian-like neutral functional differential equation (NFDE) in the form d dt fp1⁄2xðtÞ cðtÞx0ðt tÞ þ d dt rFðxðt tÞÞ þ bðtÞrGðxðt dðtÞÞÞ 1⁄4 eðtÞ; where c(t) and bðtÞ are sign-changeable. Using Mawhin’s continuation theorem, we establish some criteria to guarantee the existence of periodic solutions for the above system, which generalize and improve on the corr...
متن کاملNontrivial solutions for p-Laplacian systems
The paper deals with the existence and nonexistence of nontrivial nonnegative solutions for the sublinear quasilinear system div (|∇ui |p−2∇ui)+ λfi(u1, . . . , un)= 0 in Ω, ui = 0 on ∂Ω, i = 1, . . . , n, where p > 1, Ω is a bounded domain in RN (N 2) with smooth boundary, and fi , i = 1, . . . , n, are continuous, nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1 |ui |, we prove t...
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2019
ISSN: 1687-2770
DOI: 10.1186/s13661-019-1236-7